Home
Class 12
MATHS
" 16.(i) "log[(x^(2)+x+1)/(x^(2)-x+1)]...

" 16.(i) "log[(x^(2)+x+1)/(x^(2)-x+1)]

Promotional Banner

Similar Questions

Explore conceptually related problems

Statement -1 : If I_(1)=int(e^(x))/(e^(4x)+e^(2x)+1)dx and I_(2)=int(e^(-x))/(e^(-4x)+e^(-2x)+1)dx , then I_(2)-I_(1)=(1)/(2)log((e^(2x)-e^(x)+1)/(e^(2x)+e^(x)+1))+C where C is an arbitrary constant. Statement -2 : A primitive of f(x) =(x^(2)-1)/(x^(4)+x^(2)+1) is (1)/(2)log((x^(2)-x+1)/(x^(2)+x+1)) .

Statement -1 : If I_(1)=int(e^(x))/(e^(4x)+e^(2x)+1)dx and I_(2)=int(e^(-x))/(e^(-4x)+e^(-2x)+1)dx , then I_(2)-I_(1)=(1)/(2)log((e^(2x)-e^(x)+1)/(e^(2x)+e^(x)+1))+C where C is an arbitrary constant. Statement -2 : A primitive of f(x) =(x^(2)-1)/(x^(4)+x^(2)+1) is (1)/(2)log((x^(2)-x+1)/(x^(2)+x+1)) .

lim_(x rarr1)(x^(3)-x^(2)log x+log x-1)/(x^(2)-1) =

The domain of f(x)=(log(sin^(-1)sqrt(x^(2)+x+1)))/(log(x^(2)-x+1)) is

The domain of f(x)=(log(sin^(-1)sqrt(x^(2)+x+1)))/(log(x^(2)-x+1)) is

The domain of the function f(x)=log_(2)[1-log_(12)(x^(2)-5x+16)] is

int(log(x+1)-log x)/(x(x+1))dx= (A) log(x-1)log x+(1)/(2)(log x-1)^(2)-(1)/(2)(log x)^(2)+c (B) (1)/(2)(log(x+1))^(2)+(1)/(2)(log x)^(2)-log(x+1)log x+c (C) -(1)/(2)(log(x+1)^(2))-(1)/(2)(log x)^(2)+log x*log(x+1)+c (D) [log(1+(1)/(x))]^(2)+c

intx^(3) log x dx is equal to A) (x^(4) log x )/( 4) + C B) (x^(4))/( 8) ( log x - ( 4)/( x^(2)))+C C) (x^(4))/( 16) ( 4 log x -1) +C D) (x^(4))/( 16) ( 4 log x +1) + C

(log (x^(3) + 3x^(2) + 3x + 1))/(log (x^(2) + 2x + 1)) is equal to