Home
Class 12
MATHS
[" 1.Levele "],[" the lif "x=a sin t-b c...

[" 1.Levele "],[" the lif "x=a sin t-b cos t,y=a cos t+b sin t," prove that "(d^(2)y)/(dx^(2))]

Promotional Banner

Similar Questions

Explore conceptually related problems

If =a sin t-b cos t,y=a cos t+b sin t, prove that (d^(2)y)/(dx^(2))=-(x^(2)+y^(2))/(y^(3))

x=a cos t, y=b sin t

If x= a sin t - b cos t, y= a cos t + b sin t , show that (d^2y)/(dx^2) = -(x^2 + y^2)/(y^3)

If x=a(sin t-t cos t),y=a sin t then find the value of (d^(2)y)/(dx^(2))

If x=a sin t-b cos t,quad y=a cos t+b sin t prove that (d^(2)y)/(dx^(2))=-(x^(2)+y^(2))/(y^(3))

x=sin t, y= cos 2t.

x=a sin t and y= a (cos t + log "tan"(t)/(2)) then find (d^(2)y)/(dx^(2)) .

If x=sin tcos 2t , y=cos t sin 2t ,then " at " t= (pi)/(4) ,(dy)/(dx)=

If x=cos(2t) and y=sin^(2)t then what is (d^(2)y)/(dx^(2))