Home
Class 10
MATHS
" If "cos A+cos^(2)A=1," prove that "sin...

" If "cos A+cos^(2)A=1," prove that "sin^(2)A+sin^(4)A=1

Promotional Banner

Similar Questions

Explore conceptually related problems

If cosA+cos^(2)A=1 , then prove that sin^(2)A+sin^(4)A=1 .

If cosA+cos^(2)A=1 , then prove that sin^(2)A+sin^(4)A=1 .

if cos A+cos^(2)A=1 , then sin^(2)A+sin^(4)A=1

If sin A+sin^(2)A=1, then show that cos^(2)A+cos^(4)A=1

If (cos^(4)A)/(cos^(2)B)+(sin^(4)A)/(sin^(2)B)=1, Prove that: sin^(4)A+sin^(4)B=2sin^(2)A sin^(2)B

If (cos^(4)A)/(cos^(2)B)+(sin^(4)A)/(sin^(2)B)=1 then prove that (i)sin^(2)A+sin^(2)B=2sin^(2)A sin^(2)B(ii)(cos^(4)B)/(cos^(2)A)+(sin^(4)B)/(sin^(2)A)=1

If sin A + sin^(2)A + sin^(3)A =1 , then , prove that cos^(6) A - 4 cos^(4) A + 8 cos^(2) A =4 .

If (cos^(4)alpha)/(cos^(2) beta) + (sin^(4)alpha)/(sin^(2)beta) = 1, prove that sin^(4)alpha + sin^(4) beta = 2 sin^(2) alpha sin^(2) beta

If (cos^4 A)/(cos^2 B) + (sin^4 A)/(sin^2 B) =1 , Prove that: sin^4 A+sin^4 B=2 sin^2 A sin^2 B

If sin theta+sin^(2)theta=1, prove that cos^(2)theta+cos^(4)theta=1