Home
Class 11
MATHS
" The value of "lim(x rarr pi/4)(tan^(3)...

" The value of "lim_(x rarr pi/4)(tan^(3)x-tan x)/(cos(x+(pi)/(4)))" is "

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of lim_(xrarrpi//4) (tan^(3)x-tanx)/(cos(x+(pi)/(4))) is

The value of lim_(xrarrpi//4) (tan^(3)x-tanx)/(cos(x+(pi)/(4))) is

The value of lim_(xrarrpi//4) (tan^(3)x-tanx)/(cos(x+(pi)/(4))) is

The value of lim_(x rarr(pi)/(3))(tan^(3)x-3tan x)/(cos(x+(pi)/(6)))is:

The value of lim_(x rarr(pi)/(3))((tan^(3)x-3*tan x)/(cos(x+(pi)/(6))))

If alpha = lim_(x rarr pi//4)""(tan^(3)x - tan x)/(cos (x + (pi)/(4))) and beta = lim_(x rarr 0)(cos x)^(cot x) are the roots of the equation, a x^(2) + bx -4 = 0 , then the ordered pair (a, b) is :

lim_(x rarr pi/2)(sec x - tan x)=

The value of lim_(x->pi/4)(tan^3x-t a n x)/(cos(x+pi/4)) is 8 b. -4 c. -8 d. -2

lim_ (x rarr (pi) / (4)) (1-tan x) / (x- (pi) / (4))

lim_(x rarr pi)sgn[tan x]