Home
Class 12
MATHS
int0^1 log((x)/(1-x))dx=0...

`int_0^1 log((x)/(1-x))dx=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate int_0^1 log(1+x)/(1+x^2)dx

int(1)/(x)log((1)/(x))dx=

Show that :int_(0)^(1)(log x)/((1+x))dx=-int_(0)^(1)(log(1+x))/(x)dx

int_(0)^(1)log((1)/(x)-1)dx is equal to

The function F(x)=int_(0)^(x) log((1-x)/(1+x))dx , is

The function F(x)=int_(0)^(x)log((1-x)/(1+x))dx is

int_0^pi dx/(1+10^(cosx))+int_(-1)^1 log((2-x)/(2+x))dx= (A) pi/2 (B) -pi (C) 0 (D) none of these

int(log(1-x))/(1-x)dx

int_(0)^(1)(log(1-x))/(x)dx

I=int_(0)^(2)log((2)/(x)-1)dx