Home
Class 12
MATHS
Let f(x)-2x-x^(2),x<=1 then the roots of...

Let `f(x)-2x-x^(2),x<=1` then the roots of the equation `f(x)=f^(-1)(x)` is

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)=2x^(3)-9x^(2)+12x+6. Discuss the global maxima and minima of f(x) in [0,2].

Let f(x)=2x^(3)-9x^(2)+12x+8, the number of values of x for which y=f(f(x)) attains local extremum is/are

Let f(x)=(x-a)^(2)+(x-b)^(2)+(x-c)^(2) Then,f(x) has a minimum at x=(a+b+c)/(3)(b)(1)/(2) (c) (1)/(8) (d) none of these

Let f(x)=(x-p)^(2)+(x-q)^(2)+(x-r)^(2) Then f(x) has a minimum at x=lambda, where lambda is equal to

Let f(x)=2x^(3)-9x^(2)+12x+6. Discuss the global maxima and global minima of f(x) in (1,3).

Let f(x)=2x^(2)andg(x)=3x-4,x inR . Find the following : (i) fof (x) (ii) gog (x)

Let f(x)=2x^(3)-3x^(2)-12x+5 on [-2,4] The relative maximum occurs at x=-2 (b) -1(c)2(d)4

Let f(x)=(x^(2)-x)/(x^(2)+2x) then d(f^(-1)x)/(dx) is equal to