Home
Class 12
MATHS
Let a, b, c be positive numbers, then th...

Let a, b, c be positive numbers, then the minimum value of `(a^4+b^4+c^2)/(abc)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If a,b,c are three positive numbers then the minimum value of (a^(4)+b^(6)+c^(8))/((ab^(3)c^(2))2sqrt(2)) is equal to_____

If a,b,c are three positive numbers then the minimum value of (a^(4)+b^(6)+c^(8))/((ab^(3)c^(2))2sqrt(2)) is equal to_____

If a,b,c are positive real numbers and 2a+b+3c=1 , then the maximum value of a^(4)b^(2)c^(2) is equal to

If a,b,c are positive real numbers and 2a+b+3c=1 , then the maximum value of a^(4)b^(2)c^(2) is equal to

If a,b,c are positive real numbers and 2a+b+3c=1 , then the maximum value of a^(4)b^(2)c^(2) is equal to

If a,b,c are positive real numbers and 2a+b+3c=1 , then the maximum value of a^(4)b^(2)c^(2) is equal to

If a,b,c are three positive real numbers then the minimum value of the expression (b+c)/(a)+(c+a)/(b)+(a+b)/(c) is

If a,b,c are three positive real numbers then the minimum value of the expression (b+c)/a+(c+a)/b+(a+b)/c is

If a,b,c are positive real numbers such that a+b+c=3. then the minimum value of (a)/(6-a)+(b)/(6-b)+(c)/(6-c) is equal to