Home
Class 12
MATHS
If the planes vec (r.n1)=p1, vec (r.n2)...

If the planes `vec (r.n_1)=p_1, vec (r.n_2)=p_2 and vec (r.n_3)=p_3`, have a common line of intersection then

Promotional Banner

Similar Questions

Explore conceptually related problems

The equation of the plane which passes through the line of intersection of planes vec r. vec n_1=, q_1, vec r. vec n_2=q_2 and the is parallel to the line of intersection of planers vec r. vec n_3=q_3a n d vec r. vec n_4-q_4 is

The equation of the plane which passes through the line of intersection of planes vec r. vec n_1=, q_1, vec r. vec n_2=q_2 and the is parallel to the line of intersection of planers vec r. vec n_3=q_3a n d vec r. vec n_4-q_4 is

If P_1:vec r.vecn_1-d_1=0 P_2:vec r.vec n_2-d_2=0 and P_3:vec r.vecn_3-d_3=0 are three planes and vec n_1, vec n_2 and vec n_3 are three non-coplanar vectors, then three lines P_1= 0 , P_2=0 ; P_2=0 , P_3=0 ; P_3=0 P_1=0 are a. parallel lines b. coplanar lines c. coincident lines d. concurrent lines

If P_1:vec r.vecn_1-d_1=0 P_2:vec r.vec n_2-d_2=0 and P_3:vec r.vecn_3-d_3=0 are three planes and vec n_1, vec n_2 and vec n_3 are three non-coplanar vectors, then three lines P_1= P_2=0 ; P_2= P_3=0 ; P_3= P_1=0 are a. parallel lines b. coplanar lines c. coincident lines d. concurrent lines

Write the condition for the lines vec r= vec a_1+lambda vec b_1 a n d\ vec r= vec a_2+mu vec b_2dot\ to be intersecting.

If P_1:vec r.vecn_1-d_1=0 P_2:vec r.vec n_2-d_2=0 and P_3:vec r.vecn_3-d_3=0 are three non-coplanar vectors, then three lines P_1= 0 , P_2=0 ; P_2=0 , P_3=0 ; P_3=0 P_1=0 are

If P_1:vec r.vecn_1-d_1=0 P_2:vec r.vec n_2-d_2=0 and P_3:vec r.vecn_3-d_3=0 are three non-coplanar vectors, then three lines P_1= 0 , P_2=0 ; P_2=0 , P_3=0 ; P_3=0 P_1=0 are

If vec r=3vec p+4vec q and 2vec r=vec p-3vec q then