Home
Class 12
MATHS
Let x^2-(f(x))^2=t-1/t and x^4+(f(x))^4=...

Let `x^2-(f(x))^2=t-1/t and x^4+(f(x))^4=t^2+1/t^2.` Then the value of `int_- 2012^2012(x^3*f(x)*f^(prime)(x)+x)dx` is (i) `x^4/4+C` (ii)`{f(x)}^4/4+C` (iii) `-4024` (iv) `{f'(x)}/(3f(x))+C`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)=1/x^2 int_4^x (4t^2-2f'(t))dt then find the value of 9f'(4)

If for non zero x , 3f(x)+4f((1)/(x))=(1)/(x)-10 , then the value of int_(2)^(3)f(x)dx is

If for non zero x , 3f(x)+4f((1)/(x))=(1)/(x)-10 , then the value of int_(2)^(3)f(x)dx is

Let f(x)=int_(1)^(x)t(t^(2)-3t+2)dt,1lexle4 . Then the range of f (x) is

If int_[x]^(x+1) f(t)dt =[x] then th value of int_(-2)^4 f(x) dx is equal

If int_0^x(f(t))dt=x+int_x^1(t^2.f(t))dt+pi/4-1 , then the value of the integral int_-1^1(f(x))dx is equal to

Let f(x)=int_(0)^(4)|x^(2)-4x-t|dt,x in(0,4) ,then the range of f(x) is

Let f(x)=x^(3)-3(x^(2))/(2)+x+(1)/(4) find the value of (int_((1)/(4))^((3)/(4))f(f(x))dx)^(-1)

int_(0)^( If )(f(t))dt=x+int_(x)^(1)(t^(2)*f(t))dt+(pi)/(4)-1 then the value of the integral int_(-1)^(1)(f(x))dx is equal to