Similar Questions
Explore conceptually related problems
Recommended Questions
- nPn=n p(n-1) and nPr=rPn.nP(n-r)
Text Solution
|
- Prove that: (i) ""^(n)P(n)=""^(n)P(n-1) " (ii) "^(n)P(r)=n* ""^...
Text Solution
|
- सिद्ध कीजिए कि - (i) ""^(n)P(n)= ""^(n)P(n-1) , (ii) ""^(n)P(r) = ""...
Text Solution
|
- सिद्ध कीजिए कि ""^(n)P(r) = n.""^(n-1)P(r-1)
Text Solution
|
- सिद्ध कीजिए कि - (i) (.^(n)P(r))/(.^(n)P(r-2)) = (n-r+1) (n-r+2)...
Text Solution
|
- Show that , .^(n)P(r)=n.^(n-1)P(r-1)=(n-r+1).^(n)P(r-1).
Text Solution
|
- If ""^(n)P(r)=""^(n)P((r+1)) and ""^(n)C(r) = ""^(n)C(r-1), then (n,r)...
Text Solution
|
- প্রমাণ করো যে , . ^nPr=^(n-1)Pr+r*^(n-1)P(r-1)
Text Solution
|
- দেখাও যে . ^nPr=n*^(n-1)P(r-1)=(n-r+1)*^nP(r-1)
Text Solution
|