Home
Class 11
MATHS
nPn=n p(n-1) and nPr=rPn.nP(n-r)...

`nP_n=n p_(n-1)` and `nP_r=rP_n.nP_(n-r)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If nC_(r)=nC_(r-1) and nP_(r)=nP_(r+1), then the value of n is

If ^nP_r=^nP_(r+1) and ^nC_r=^nC_(r-1) then the values of n,r are

if ^nP_r= ^nP_(r+1) and ^nC_r= ^nC_(r-1) find n and r.

if nP_(r)=nP_(r+1) and nC_(r)=nC_(r-1) then value of (n+r) is equal to

If .^nP_r = .^nP_(r + 1) and .^nC_r = .^nC_(r-1) then the value of n + r is..

Prove that nP_2= ^nP_(n-2)

nP5=42(nP3), find n

Prove that nP_n=2 ^nP_(n-2)

If ""^(nP_(r)=""^(n)P_(r+1) and ""^(n)C_(r)=""^(n)C_(r-1) find n and r.