Home
Class 12
MATHS
If primitive of sin (log x) is f(x)*{sin...

If primitive of `sin (log x)` is `f(x)*{sin g(x)- cos h(x)}+c,` (c being constant of integration), then (i) `lim_(x->2)f(x)=1` (ii) `lim_(x->1)g(x)/(h(x))=1` (iii) `g(e^3)=3` (iv) `h(e^5)=5`

Promotional Banner

Similar Questions

Explore conceptually related problems

If primitive of sin (log x) is f(x)*{sin g(x)- cos h(x)}+c, (c being constant of integration), then which of the following is correct (i) lim_(x->2)f(x)=1 (ii) lim_(x->1)g(x)/(h(x))=1 (iii) g(e^3)=3 (iv) h(e^5)=5

lim_(x-gt0) (e^(3x)-1)/(log(1+5x))

If the primitive of (1)/((e^(x)-1)^(2)) is f(x)-log g(x)+c then

If int x^(5)e^(-x^(2))dx = g(x)e^(-x^(2))+C , where C is a constant of integration, then g(-1) is equal to

If int x^(5)e^(-x^(2))dx = g(x)e^(-x^(2))+C , where C is a constant of integration, then g(-1) is equal to

if int x^(5)e^(-x^(2))dx=g(x)e^(-x^(2))+c where c is a constant of integration then g(-1) is equal to

If f(x)=sin^(-1)x then prove that lim_(x->1/2)f(3x-4x^3)=pi-3lim_(x->1/2)sin^(-1)x

If f(x)=sin^(-1)x then prove that lim_(x->1/2)f(3x-4x^3)=pi-3lim_(x->1/2)sin^(-1)x

If f(x)=sin^(-1)x then prove that lim_(x->1/2)f(3x-4x^3)=pi-3lim_(x->1/2)sin^(-1)x