Home
Class 12
MATHS
inta^b sgn(x)dx equals (a,b in R)...

`int_a^b sgn(x)dx` equals `(a,b in R)`

Promotional Banner

Similar Questions

Explore conceptually related problems

int_a^b logx/x dx

If f(a+b-x)=f(x),\ t h e n\ int_a^b xf(x)dx is equal to (a+b)/2int_a^bf(b-x)dx b. (a+b)/2int_a^bf(b+x)dx c. (b-1)/2int_a^bf(x)dx d. (a+b)/2int_a^bf(x)dx

If a < 0 < b , then int_a^b (|x|)/x dx equals :

int_(a)^(b)f(x)dx is equal to-

If f(a+b-x)=f(x),\ t h e n\ int_a^b xf(x)dx is equal to a. (a+b)/2int_a^bf(b-x)dx b. (a+b)/2int_a^bf(b+x)dx c. (b-1)/2int_a^bf(x)dx d. (a+b)/2int_a^bf(x)dx

int_(-1)^(10) sgn (x-[x])dx equals

If f(a+b-x)=f(x) , then int_a^b x f(x)dx is equal to (A) (a-b)/2int_a^b f(a+b-x)dx (B) (a+b)/2int_a^b f(b-x)dx (C) (a+b)/2int_a^b f(x)dx (D) (b-a)/2int_a^b f(x)dx

What is int_(a)^(b) (logx)/(x) dx equal to ?

The value of int_-1^10 sgn (x -[x])dx is equal to (where, [:] denotes the greatest integer function