Home
Class 12
MATHS
Let :(0,oo)rarr R and F(x)=int0^x t f(t)...

Let `:(0,oo)rarr R and F(x)=int_0^x t f(t) dt` If `F(x^2)=x^4+x^5,x > 0` then (i) `F(4)=7` (ii) f(x) is continuous everywhere (iii) f(x) is increasing for x `gt 0` (iv) f(x) is onto

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f : (0,oo) to R and F(x)=int_(0)^(x)t f(t)dt . If F(x^(2))=x^(4)+x^(5) , then

Let f : (0,oo) to R and F(x)=int_(0)^(x)t f(t)dt . If F(x^(2))=x^(4)+x^(5) , then

Let f:(0,oo)rarrR and F(x)=int_0^x f(t)dt . If F(x^2)=x^2(1+x) , then f(4)= (A) 5/4 (B) 7 (C) 4 (D) 2

Let f : (0, oo ) to R and F(x) = int_0^x f(t) dt . If F(x^2) = x^2(1 + x) , then f(4) equals :

Let f:(0,oo)rarr R and F(x^(3))=int_(0)^(x^(2))f(t)dt If F(x^(3))=x^(3)(x^(2)+x+1), then f(27)=

Let f:(0,oo)to R and F(x)=int_(0)^(x) f(t)dt. " If " F(x^(2))=x^(2)(1+x) , then f(4) equals

Let f:(0, oo) in R and F(x) = int_(0)^(x) f(t) dt . If F(x^(2))=x^(2)(1+x) then f (4) equals

Let f:(0,oo)to R and F(x)=int_(0)^(x) f(t)dt. " If " F(x^(2))=x^(2)(1+x) , then f(4) equals

Let f:(0,oo)to R and F(x)=int_(0)^(x) f(t)dt. " If " F(x^(2))=x^(2)(1+x) , then f(4) equals