Home
Class 12
MATHS
The int(tan^-1 alpha)^(cot^-1 alpha) (ta...

The `int_(tan^-1 alpha)^(cot^-1 alpha) (tanx)/(tanx+cotx)dx alpha in R` cannot take the value (i) `pi` (ii)`pi/2` (iii)`pi/4` (iv)`-pi/4`

Promotional Banner

Similar Questions

Explore conceptually related problems

int_(tan^-1a)^(cot^-1a) dx/(1+tanx) cannot take the value(s) (A) -pi/4 (B) pi/4 (C) pi/2 (D) pi

int_(0)^(pi//2)(cotx)/(tanx+cotx)dx=

int_(-pi//4)^0 (1+tanx)/(1-tanx) dx

int_0^(pi/2)In(tanx+cotx)dx

The value of int_(0)^(-pi//4)(1+tanx)/(1-tanx)dx is

The value of int_(0)^(-pi//4)(1+tanx)/(1-tanx)dx is

Solve: tan^(-1)(cotx)+cot^(-1)(tanx)= pi/4

Evaluate : int_(pi/3)^(pi/4)(tanx+cotx)^2dx

Evaluate : int_(pi/3)^(pi/4)(tanx+cotx)^2dx

Prove that: int_(0)^( pi)(x)/(1-cos alpha sin x)dx=(pi(pi-alpha))/(sin alpha)