Home
Class 12
MATHS
Let f:(0,oo)rarr RR be given by f(x)=int...

Let `f:(0,oo)rarr RR` be given by `f(x)=int_(1//x)^x\ e^-(t+1/t) dt/t`. Then (i) f(x) is monotonically increases in `(1,infty)` (ii)f(x) is monotonically decreases in `(0.1)` (iii)` f(x) +f(1/x)= 0` far all x in` (0,infty)` (iv)` f(2^x) `is an odd function of x on R

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f : (0,infty) rarr R be given by f(x) = int_(1/x)^(x) e^-(t + 1/t) dt/t then

Let f:(0,oo) to vec R be given by f(x)=int_(1/x)^x(e^(-(t+1/t))dt)/t , then

Let, f:(0,oo)toR be given by f(x)=int_((1)/(x))^(x)e^(-(t+(1)/(t)))(dt)/(t) Then

Let f:(0,oo) in R be given f(x)=int_(1//x)^(x) e^-(t+(1)/(t))(1)/(t)dt , then

Let f:(0,oo)vec R be given by f(x)=int_((1)/(x))^(x)(e^(-(t+(1)/(t)))dt)/(t), then (a)f(x) is monotonically increasing on [1,oo)(b)f(x) is monotonically decreasing on (1,oo)(b)f(x) is an odd function of x on R

Let f:(0,oo)vecR be given by f(x)=int_(1/x)^x(e^(-(t+1/t))dt)/t , then (a) f(x) is monotonically increasing on [1,oo) (b) f(x) is monotonically decreasing on (0,1) (c) f(2^x) is an odd function of x on R (d) none of these.

Let f(x)=int_(0)^(x)e^(t)(t-1)(t-2)dt. Then, f decreases in the interval

Let f(x)=int_(0)^(x)e^(t)(t-1)(t-2)dt. Then, f decreases in the interval

Let f(x)=int_(0)^(x)e^(t)(t-1)(t-2)dt. Then, f decreases in the interval