Home
Class 12
MATHS
(int0^(4pi)e^t(sin^6a t+cos^4a t)dt)/(in...

`(int_0^(4pi)e^t(sin^6a t+cos^4a t)dt)/(int_0^pie^t(sin^6a t+cos^4a t)dt)=L` (i) `a=2, L=(e^(4pi)-1)/(e^(pi)-1)` (ii) `a=2, L=(e^(4pi)+1)/(e^(pi)+1)` (iii) `a=4, L=(e^(4pi)-1)/(e^(pi)-1)` (iv) `a=4, L=(e^(4pi)+1)/(e^(pi)+1)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If x= e^t (sin t - cos t) , y= e^t (sin t + cos t) , find dy/dx at t= pi/4

Consider I_(1)=int_((pi)/(4))^((pi)/(2))(e^(sinx)+1)/(e^(cosx)+1)dx and I_(2)=int_((pi)/(4))^((pi)/(2))(e^(cosx)+1)/(e^(sinx)+1)dx , then

Consider I_(1)=int_((pi)/(4))^((pi)/(2))(e^(sinx)+1)/(e^(cosx)+1)dx and I_(2)=int_((pi)/(4))^((pi)/(2))(e^(cosx)+1)/(e^(sinx)+1)dx , then

int_(-pi//4)^(pi//4)(e^(x)x sin x)/(e^(2x)-1)dx=

int_(-pi/4)^(pi/4)(e^(x)*sec^(2)xdx)/(e^(2x)-1) is equal to

Ifint_(pi/3)^xsqrt((3-sin^2t))dt+int_0^ycostdt=0,t h e ne v a l u a t e(dy)/(dx)

Ifint_(pi/3)^xsqrt((3-sin^2t))dt+int_0^ycostdt=0,t h e ne v a l u a t e(dy)/(dx)

Find dy/dx at t = pi/4 when x e^(-t) (sin t + cos t ) and y = e^-t (sin t - cost)

The value of int_(0)^((pi)/(4))(e^((1)/(cos^(2)x))*sin x)/(cos^(3)x)dx equals (A) (e^(2)-e)/(2)(B)(e^(4)-1)/(4)(C)(e^(2)+e)/(4) (D) (e^(4)-1)/(2)

The option(s) with the values of aa n dL that satisfy the following equation is (are) (int_0 ^(4pi)e^t(sin^6a t+cos^4at)dt)/(int_0^pie^t(sin^6at+cos^4a t)dt)=L