Home
Class 12
MATHS
Prove that [vec a,vec b+vec c,vec d]=[v...

Prove that `[vec a,vec b+vec c,vec d]=[vec a,vec b,vec d]+[vec a,vec c,vec d]`.

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that [vec a,vec b,vec c+vec d]=[vec a,vec b,vec c]+[vec a,vec b,vec d]

Prove that [ vec a, vec b, vec c + vec d] = [ vec a, vec b, vec c] + [ vec a, vec b , vec d] .

Prove that [ vec a , vec b , vec c+ vec d]=[ vec a , vec b , vec c]+[ vec a , vec b , vec d]

[[ Property 384:[vec a+vec b;vec c;vec d]=[vec a;vec c;vec d]+[vec b;vec c;vec d] and right and left handed system

Prove that [vec(a),vec(b),vec( c) +vec(d)]=[vec(a),vec(b),vec( c)] +[vec(a),vec(b),vec(d)] .

Prove that (vec a × vec b).(vec c × vec d) = [[vec a.vec c,vec a.vec d],[vec b.vec c,vec b.vec d]] .

Prove that [vec(a),vec(b),vec( c )+vec(d)]=[vec(a),vec(b),vec( c )]+[vec(a),vec(b),vec(d)] .

If vec a , vec ba n d vec c are three non coplanar vectors, then prove that vec d=( vec a.vec d)/([ vec a vec b vec c])( vec bxx vec c)+( vec b.vec d)/([ vec a vec b vec c])( vec cxx vec a)+( vec c. vec d)/([ vec a vec b vec c])( vec axx vec b)

Statement 1: vec a , vec b ,a n d vec c are three mutually perpendicular unit vectors and vec d is a vector such that vec a , vec b , vec ca n d vec d are non-coplanar. If [ vec d vec b vec c]=[ vec d vec a vec b]=[ vec d vec c vec a]=1,t h e n vec d= vec a+ vec b+ vec c Statement 2: [ vec d vec b vec c]=[ vec d vec a vec b]=[ vec d vec c vec a] =>vec d is equally inclined to veca,vecb,vecc.

Statement 1: vec a , vec b ,a n d vec c are three mutually perpendicular unit vectors and vec d is a vector such that vec a , vec b , vec ca n d vec d are non-coplanar. If [ vec d vec b vec c]=[ vec d vec a vec b]=[ vec d vec c vec a]=1,t h e n vec d= vec a+ vec b+ vec c Statement 2: [ vec d vec b vec c]=[ vec d vec a vec b]=[ vec d vec c vec a] =>vec d is equally inclined to veca,vecb,vecc.