Home
Class 11
MATHS
" 11.Show that "2^(sin x)+2^(cos x)>=2^(...

" 11.Show that "2^(sin x)+2^(cos x)>=2^(1-(1)/(sqrt(2)))

Promotional Banner

Similar Questions

Explore conceptually related problems

show that 2^(sin x)+2^(cos x)ge2^(1-(1)/sqrt(2))

show that 2^(sin x)+2^(cos x)ge2^(1-(1)/sqrt(2))

show that 2^(sin x)+2^(cos x)ge2^(1-(1)/sqrt(2))

Show that : sin[cos^-1{tan(sec^-1 x)}]=sqrt(2-x^2)

Show that, sin^(-1)(2xsqrt(1-x^(2)))=2sin^(-1)x,-1/sqrt2lexle1/sqrt2

Show that, sin^(-1)(2xsqrt(1-x^(2)))=2cos^(-1)x,1/sqrt2lexle1

Prove that sin^(-1)(2x.sqrt(1-x^(2)))=2cos^(-1)x,(1)/(sqrt(2))lexlt1

Show that : {cos(sin^-1 x)}^2={sin(cos^-1 x)}^2

Show that (i) sin^(-1)(2xsqrt(1-x^(2)))=2sin^(-1)x,-1/(sqrt(2))lexle1/(sqrt(2)) (ii) sin^(-1)(2xsqrt(1-x^(2)))=2cos^(-1)x,1/(sqrt(2))lexle1