Home
Class 12
MATHS
223*1-(sin^(2)y)/(1+cos y)+(1+cos y)/(si...

223*1-(sin^(2)y)/(1+cos y)+(1+cos y)/(sin y)-(sin y)/(1-cos y)=

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of the expression 1- (sin^(2)y)/(1+ cos y) + (1+ cos y)/(sin y) -(sin y)/(1- cos y) is .................. A) 0 B) 1 C) sin y D) cos y

The value of the expression 1- (sin^(2)y)/(1+ cos y) + (1+ cos y)/(sin y) -(sin y)/(1- cos y) is

1-(sin^(2)y)/(1+ cos y) + (1+ cosy)/( sin y) - (siny)/(1- cos y) =

The value of the expression 1- (sin ^ (2) y) / (1 + cos y) + (1 + cos y) / (sin y) - (sin y) / (1-cos y) is equal to

If (cos^(4)x)/(cos^(2)y)+(sin^(4)x)/(sin^(2)y)=1 , then (cos^(4)y)/(cos^(2)x)+(sin^(4)y)/(sin^(2)y) equal :

Find the area bounded by the curves y=(sin^(-1)(sin x)+cos^(-1)(cos x)) and y=(sin^(-1)(sin x)+cos^(-1)(cos x))^(2) for 0<=x<=2 pi

If tan A=(x sin B)/(1-cos B)tan B=(y sin A)/(1-y cos A) then (x)/(y)=

If (cos ^ (4) x) / (cos ^ (2) y) + (sin ^ (4) x) / (sin ^ (2) y) = 1 then prove that (cos ^ (4) y) / (cos ^ (2) x) + (sin ^ (4) y) / (sin ^ (2) x) = 1

If (cos^4x)/(cos^2y)+(sin^4x)/(sin^2y)=1,"show taht", (cos^4y)/(cos^2x)+(sin^4y)/(sin^2x)=1

If (sin x) (sin y) = 1, then (cos x) (cos y) =?