Home
Class 12
MATHS
" Sin3"alpha=4sin alpha*sin(theta+alpha)...

" Sin3"alpha=4sin alpha*sin(theta+alpha)*sin(theta-2)

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve: sin3alpha=4sinalpha. Sin(theta+alpha).sin(theta-alpha) where alpha ne n pi, n in I

Solve: sin3alpha=4sinalpha. Sin(theta+alpha).sin(theta-alpha) where alpha ne n pi, n in I

cos ( theta + alpha)* cos ( theta - alpha) + sin ( theta + alpha) * sin (theta - alpha )=

sin(3theta+alpha)+sin(3theta-alpha)+sin(alpha-theta)-sin(alpha+theta)=cosalpha

sin(3theta+alpha)+sin(3theta-alpha)+sin(alpha-theta)-sin(alpha+theta)=cosalpha

sin(3theta+alpha)+sin(3theta-alpha)+sin(alpha-theta)-sin(alpha+theta)=cosalpha

Simplify be reducing to a single term : cos (theta + alpha ) cos ( theta - alpha ) - sin ( theta + alpha ) sin (theta - alpha).

The value of 2sin^(2)theta+4cos(theta+alpha)sin alpha sin theta+cos2(alpha+theta)

sin(3 theta+alpha)+sin(3 theta-alpha)+sin(alpha-theta)-sin(alpha+theta)=cos alpha

Prove that :2sin^(2)theta+4cos(theta+alpha)sin alpha sin theta+cos2(alpha+theta) is independent of theta.