Home
Class 9
MATHS
x^4/4 +y^3/3-(3z^2)/5 +x^4/3-(3y^3)/5+z^...

`x^4/4 +y^3/3-(3z^2)/5 +x^4/3-(3y^3)/5+z^2/4-(3x^4)/5+y^3/4+z^2/3`

Promotional Banner

Similar Questions

Explore conceptually related problems

If Q is the image of the point P (2,3,4) under the reflection in the plane x-2y+5z=6 then the equation of the line PQ is a) (x-2)/(-1)= (y-3)/2= (z-4)/5 b) (x-2)/(1)= (y-3)/(-2)= (z-4)/5 c) (x-2)/(-1)= (y-3)/(-2)= (z-4)/5 d) (x-2)/(1)= (y-3)/(2)= (z-4)/5

The HCF of x^(3)y^(2)z^(5) and x^(2)y^(4)z^(3) is

Factorize: (x/2+y+z/3)^3+\ \ (x/3-(2y)/3+z)^3+(-(5x)/6-y/3-(4z)/3)^3

The lines (x-1)/(a) = (y-2)/(3) = (z-3)/(4) , (x-2)/(3) = (y-3)/(4) = (z-4)/(5) are coplanar. Then a=

Simplify: (15x^(5)y^(-2)z^(4))/(5x^(3)y^(-3)z^(2))

The image of the line (x-1)/3=(y-3)/1=(z-4)/(-5) in the plane 2x-y+z+3=0 is the line (1) (x+3)/3=(y-5)/1=(z-2)/(-5) (2) (x+3)/(-3)=(y-5)/(-1)=(z+2)/5 (3) (x-3)/3=(y+5)/1=(z-2)/(-5) (3) (x-3)/(-3)=(y+5)/(-1)=(z-2)/5

The image of the line (x-1)/(3)=(y-3)/(1)=(z-4)/(-5) in the plane 2x-y+z+3=0 is the line (1)(x+3)/(3)=(y-5)/(1)=(z-2)/(-5) (2) (x+3)/(-3)=(y-5)/(-1)=(z+2)/(5) (3) (x-3)/(3)=(y+5)/(1)=(z-2)/(-5) (3) (x-3)/(-3)=(y+5)/(-1)=(z-2)/(5)

Let x,y,z be real numbers satisfying x+y+z=3,x^(2)+y^(2)+z^(2)=5 and x^(3)+y^(3)+z^(3)=7 then the value of x^(4)+y^(4)+z^(4) is

5x-[4y-{7x-(3z-2y)+4z-3(x+3y-2z)}]