Home
Class 13
MATHS
[((1+x)^(1/x))/(e)]^(1/x)...

[((1+x)^(1/x))/(e)]^(1/x)

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x rarr0)(e^(1/x)-e^(-1/x))/(e^(1/x)+e^(-1/x))

Let f(x)=x^(2)(e^(1/x)e^(-1/x))/(e^(1/x)+e^(-1/x)),x!=0 and f(0)=1 then-

The functionf(x)={(x(e^(1/x)-e^(-1/x)))/(e^(1/x)+e^(-1/x)), when x!=0 and f(x)=0 when x=0 (1) continuos everywhere but not differentiable at x=o (2) continuouas and differentiable everywhere (3) hot continuous at x=0 (4) differentiable at x=0

The function f (x)={((x ^(2n)))/((x ^(2n) sgn x)^(2n+1))((e ^(1/x)-e ^(-1/x))/(e ^(1/x)+e ^(-(1)/(x))))x ne0 n in N is:

The function f (x)={((x ^(2n)))/((x ^(2n) sgn x)^(2n+1))((e ^(1/x)-e ^(-1/x))/(e ^(1/x)+e ^(-(1)/(x))))x ne0 n in N is:

The function f(x)={(e^(1/x)-1)/(e^(1/x)+1),x!=0 \ \ \ \ \ \ \ 0,x=0 at x=0

f(x)=(e^(1/x)-1)/(e^(1/x)+1) find f^(-1)(x)

Show that the function f(x) given by f(x)={(e^(1/x)-1)/(e^(1/x)+1), when x!=00,quad when x=0 is discontinuous at x=0

underset(x to oo)"Lt" (e^(1//x)-e^(-1//x))/(e^(1//x)+e^(-1//x))=