Home
Class 12
MATHS
In a triangle ABC, if (a+b+c)(a+b-c)(b+c...

In a triangle ABC, if `(a+b+c)(a+b-c)(b+c-a)(c+a-b)=(8a^2b^2c^2)/(a^2+b^2+c^2)` then the triangle is

Promotional Banner

Similar Questions

Explore conceptually related problems

In a triangle ABC, if (a+b+c)(a+b-c)(b+c-a)(c+a-b)=(8a^(2)b^(2)c^(2))/(a^(2)+b^(2)+c^(2)) then the triangle is

In a triangle ABC, if (a+b+c)(a-b)^(2)+(b-c)^(2)+(c-a)^(2))=2c^(2)(a+b+c)-6abc, then

For any triangle ABC, ((a+b+c)(b+c-a)(c+a-b)(a+b-c))/(4b^2c^2) is equal to

In a triangle ABC if 2Delta^(2)=(a^(2)b^(2)c^(2))/(a^(2)+b^(2)+c^(2)) , then it is

In a triangle ABC if 2Delta^(2)=(a^(2)b^(2)c^(2))/(a^(2)+b^(2)+c^(2)) , then it is

In a triangle ABC if 2Delta^(2)=(a^(2)b^(2)c^(2))/(a^(2)+b^(2)+c^(2)) , then it is

In any Delta ABC,((a+b+c)(b+c-a)(c+a-b)(a+b-c))/(4b^2c^2) =

In a triangle ABC prove that a/(a+c)+b/(c+a)+c/(a+b)<2

In any triangle ABC, prove that : (sin(B-C))/(sin(B+C))= (b^2 -c^2)/a^2 .