Home
Class 12
MATHS
Let veca=i+j+k.vecb={x}i+{sinx}j.vecc=c1...

Let `veca=i+j+k.vecb={x}i+{sinx}j.vecc=c_1 i+c_2 j+c_3 k,|vecc|=1,(veca,vecb)=pi/4, veca and vecb` are perpendicular to c.(Here [.] is G.I.F, {.} is fractional part function). Let `f(x)=[veca(vecb xx vecc)]^2,A=[1,pi/4,pi/2,2,(2pi)/3,3}.A` number is selected at random from `A.` If `f` is discontinuous at that number then the probability that `f` has local minimum is

Promotional Banner

Similar Questions

Explore conceptually related problems

Let veca = 2i + j+k, vecb = i+ 2j -k and a unit vector vecc be coplanar. If vecc is pependicular to veca . Then vecc is

Let veca = 2i + j+k, vecb = i+ 2j -k and a unit vector vecc be coplanar. If vecc is pependicular to veca . Then vecc is

Let veca = 2i + j+k, vecb = i+ 2j -k and a unit vector vecc be coplanar. If vecc is pependicular to veca . Then vecc is

If veca=i-2j+3k , vecb=2i+3j-4k and vecc=i-3j+5k ,then check whether veca , vecb , vecc are coplanar.

Let veca = 2i + j+k, vecb = i+ 2j -k and a unit vector vecc be coplanar. If vecc is pependicular to veca .Find vecc .

Consider veca=i+2j-3k,vecb=3i-j+2k,vecc=11i+2j . Find veca+vecb and veca*vecb .

Let |veca| = 3, |vecb| = 5, vecb.vecc= 10 , angle between vecb and vecc equal to pi/3 . If veca is perpendicular vecb xx vecc then find the value of |veca xx (vecb xx vecc)|

Let |veca| = 3, |vecb| = 5, vecb.vecc= 10 , angle between vecb and vecc equal to pi/3 . If veca is perpendicular vecb xx vecc then find the value of |veca xx (vecb xx vecc)|

Consider veca=i+2j-3k,vecb=3i-j+2k,vecc=11i+2j . Show that veca+vecb and veca-vecb are orthogonal.

Let veca vecb and vecc be pairwise mutually perpendicular vectors, such that |veca|=1, |vecb|=2, |vecc| = 2 , the find the length of veca +vecb + vecc .