Home
Class 12
MATHS
li(x rarr oo)(sqrt(x^(2)+ax+b)-x)=...

li_(x rarr oo)(sqrt(x^(2)+ax+b)-x)=

Promotional Banner

Similar Questions

Explore conceptually related problems

If lim_(x rarr-oo)(sqrt(x^(2)-ax)-x)=(1)/(2) then a=

lim_(x rarr oo)(sqrt(x^(2)+x)-x)

Show that lim_(x rarr oo)(sqrt(x^(2)+x+1)-x)!=lim_(x rarr oo)(sqrt(x^(2)+1)-x)

lim_(x rarr oo)(sqrt(x^(2)-x+1)-ax-b)=0, then a+b=

If lim_(x rarr oo)(sqrt(x^(2)-x+1)-ax-b)=0 then the value of a and b are given by:

lim_(x rarr oo)(sqrt(x^(2)-x-1)-ax-b)=0 where a>0, then there exists at least one a and b for which point (a,2b) lies on the line

lim_(x rarr oo)(x( sqrt(1+x^(2))-x))

lim_(x rarr+oo)x(sqrt(x^(2)+1)-x)

If lim_(x rarr oo)ax+sqrt(x^(2)+bx)=3

The value of lim_(x rarr oo)[sqrt(x^(2)+x+1)-(ax+b)]=0, then