Home
Class 11
MATHS
If f(x) is a function that is odd and ev...

If `f(x)` is a function that is odd and even simultaneously, then `f(3)-f(2)` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If f is an odd function and g is an even function,then fog is

Let f(x) be real valued and differentiable function on R such that f(x+y)=(f(x)+f(y))/(1-f(x)*f(y))f(x) is Odd function Even function Odd and even function simultaneously Neither even nor odd

Let f(x) be real valued and differentiable function on R such that f(x+y)=(f(x)+f(y))/(1-f(x)dotf(y)) f(x) is Odd function Even function Odd and even function simultaneously Neither even nor odd

Let f(x) be real valued and differentiable function on R such that f(x+y)=(f(x)+f(y))/(1-f(x)dotf(y)) f(x) is Odd function Even function Odd and even function simultaneously Neither even nor odd

Let f(x) be real valued and differentiable function on R such that f(x+y)=(f(x)+f(y))/(1-f(x)dotf(y)) f(x) is Odd function Even function Odd and even function simultaneously Neither even nor odd

Statement 1: If f(x) is an odd function,then f'(x) is an even function.Statement 2: If f'(x) is an even function,then f(x) is an odd function.

If f(x) is an even function and g is an odd function, then f(g(x)) is……………….function

Statement - I : If f(x) is an odd function, then f'(x) is an even function. Statement - II : If f'(x) is an even function, then f(x) is an odd function.

Statement 1: If f(x) is an odd function, then f^(prime)(x) is an even function. Statement 2: If f^(prime)(x) is an even function, then f(x) is an odd function.