Home
Class 11
MATHS
log(1/2)(sin x)>log(1/2)(|cos x|), for x...

`log_(1/2)(sin x)>log_(1/2)(|cos x|),` for `x in [0,2 pi]` ,which of these are correct for the complete solution of the given equation

Promotional Banner

Similar Questions

Explore conceptually related problems

If log_(cos x)sin x>=2 and x in[0,3 pi] then sin x lies in the interval

If log_(sinx)(cos x) = (1)/(2) , where x in (0, (pi)/(2)) , then the value of sin x is equal to-

Solve: 1 + log_2 (sin x) + log_2 (sin 3x) gt 0 , 0 le x le 2pi .

The number of solution of the equation log(-2x)= 2 log(x+1) are

lf_(log_(2)(3sin x)-log_(2)(cos x)-log_(2)(1-tan x)-log_(2)(1+tan x)=1) then tan x=

If log_(cos x)sin x>2 and 0

If log_(0.5)sin x=1-log_(0.5)cos x, then the number of solutions of x in[-2 pi,2 pi] is

log_(2)sin x-log_(2)cos x-log_(2)(1-tan x)-log_(2)(1+tan x)=-1

lf_(log_(2)sin x-log_(2)cos x-log_(2)(1-tan^(2)x))=-1, then x=

In the interval (0,2 pi) , sum of all the roots of the equation sin(pi log_(3) (1/x)) = 0 is