Home
Class 12
MATHS
If int\ 1/(1-tan^2x) \ dx = f(x) + 1/4 l...

If `int\ 1/(1-tan^2x) \ dx = f(x) + 1/4 ln tan(pi/4 + x) + c`, then `f(x)=`

Promotional Banner

Similar Questions

Explore conceptually related problems

If int tan^(7) x dx = f(x) + log |cos x | +c then f(x) =

int_( then )^( If )(1)/(1-tan^(2)x)dx=f(x)+(1)/(4)ln tan((pi)/(4)+x)+c

If int (1)/(sin x + sqrt(3) cos x) dx = A log | tan f (x) | + C then A , f(x) =

If int (1)/(4 + 5 sin x) " dx "= (1)/(3) log |f (x)| + c then f(x) =

If int(1)/(cos^(2)x(1-4tan^(2)x))dx=K log|(1+2tan x)/(1-2tan x)|+c, then K=

If int (1)/(cos^(6) x + sin^(6) x) dx = tan^(-1) f(x) + C then f(x) =

If int (sec^(2) x)/(3 + 4 tan x) dx = K log | 3 + 4 tan x | + C then 1/K =

If int (4 sec^(2)" x tan x")/(sec^(2) " x + tan"^(2) x)" dx = log " |1 + f(x) | + C then f(x) =

If int (f(x))/(log cos x) dx = - log(log cos x) + C , then f(x) is equal to a)tan x b) -sin x c) -cos x d) -tan x