Home
Class 12
MATHS
If A+B+C=pi, prove that : sin2A+sin2B+si...

If `A+B+C=pi`, prove that : `sin2A+sin2B+sin2C=4sinA sinB sinC`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that sin2A + sin2B + sin2C = 4sinA · sinB · sin C

Prove that sin2A + sin2B + sin2C = 4sinA · sinB · sin C

If A+B+C=pi , prove that sin 2A+sin 2B+sin 2C=4 sinA sin B sinC.

If A+B+C= pi/2 ,prove that: sin2A-sin2B+sin2C=4sinAcosBsinC

If A+B+C= pi/2 ,prove that: sin2A-sin2B+sin2C=4sinAcosBsinC

If A+B+C=pi , prove that : (sin 2A+sin 2B + sin 2C)/(sinA+sinB+sinC) = 8 sin(A/2) sin(B/2) sin(C/2)

If A+B+C=pi then prove that sin2A-sin2B+sin2C=4cosAsinBcosC

If A+B+C=pi, prove that sin^(2)A-sin^(2)B+sin^(2)C=2sinA cos B sinC

In DeltaABC , prove that: a) (sin2A + sin2B + sin2C)/(sinA+sinB+sinC) = 8sinA/2 sinB/2sinC/2

In DeltaABC , prove that: a) (sin2A + sin2B + sin2C)/(sinA+sinB+sinC) = 8sin(A/2) sin(B/2)sin(C/2)