Home
Class 12
MATHS
Sn=3/(1^2)+3/(1^2+2^2)+7/(1^2+2^2+3^2)+ ...

`S_n=3/(1^2)+3/(1^2+2^2)+7/(1^2+2^2+3^2)+` upto `n` terms, then `S_n=(6n)/(n+1)` b. `S_n=(6(n+2))/(n+1)` c. `S_oo=6` d. `S_oo=1`

Promotional Banner

Similar Questions

Explore conceptually related problems

S_n=3/(1^2)+5/(1^2+2^2)+7/(1^2+2^2+3^2)+ upto n terms, then a. S_n=(6n)/(n+1) b. S_n=(6(n+2))/(n+1) c. S_oo=6 d. S_oo=1

S_(n)=(3)/(1^(2))+(3)/(1^(2)+2^(2))+(7)/(1^(2)+2^(2)+3^(2))+... upto n terms,then S_(n)=(6n)/(n+1) b.S_(n)=(6(n+2))/(n+1)cS_(oo)=6d.S_(oo)=1

If S_n=1^2+(1^2+2^2)+(1^2+2^2+3^2)+ upto n terms, then S_n=(n(n+1)^2(n+2))/(12) b. S_n=(n(n-1)^2(n+2))/(12) c. S_(22)=3276 d. S_(22)=23275

If 1/1^3 + (1+2)/(1^3+2^3)+(1+2+3)/(1^3+2^3+3^3) +.......n terms then lim_(n->oo) [S_n]

Let S_n=1/1^2 + 1/2^2 + 1/3^2 +….. + 1/n^2 and T_n=2 -1/n , then :

Let S_n=1/1^2 + 1/2^2 + 1/3^2 +….. + 1/n^2 and T_n=2 -1/n , then :

S_(n) = (1+2+3+....+n)/( n) then S_(1)^(2) + S_(2)^(2) + S_(3)^(2) + ..... + S_(n)^(2) =

If S_n denotes the sum of n terms of A.P., then S_(n+3)-3S_(n+2)+3S_(n+1)-S_n= a).2^S_n b). s_(n+1) c). 3S_n d). 0

If S_n denotes the sum of n terms of A.P., then S_(n+3)-3S_(n+2)+3S_(n+1)-S_n= (a) S_2-n b. S_(n+1) c. 3S_n d. 0

If S_(n) denotes the sum of n terms of A.P.then S_(n+1)-3S_(n+2)+3S_(n+1)-S_(n)=2^(S)-nbs_(n+1)c.3S_(n)d.0