Home
Class 12
MATHS
Prove that the real valued function f(x)...

Prove that the real valued function `f(x)=x/(e^x-1)+x/2+1` is an even function on `RR-{0}`.

Promotional Banner

Similar Questions

Explore conceptually related problems

P.T the real valued function f(x)= (x)/(e^(x)-1) + x/2 + 1 is an even function on R-{0} .

If the real valued function f(x)=(a^(x)-1)/(x^(n)(a^(x)+1)) is even then n equals

The domain of the real valued function f(x)=3e^sqrt(x^2-1)log(x-1) is

If f(x+y)=f(x)*f(y) for all real x,y and f(0)!=0, then prove that the function g(x)=(f(x))/(1+{f(x)}^(2)) is an even function.

If f(x+y)=f(x)dotf(y) for all real x , ya n df(0)!=0, then prove that the function g(x)=(f(x))/(1+{f(x)}^2) is an even function.

If f(x+y)=f(x)dotf(y) for all real x , ya n df(0)!=0, then prove that the function g(x)=(f(x))/(1+{f(x)}^2) is an even function.

If f(x+y)=f(x)dotf(y) for all real x , ya n df(0)!=0, then prove that the function g(x)=(f(x))/(1+{f(x)}^2) is an even function.