Home
Class 14
MATHS
sqrt(?)-(5)=sqrt(2209)...

`sqrt(?)-(5)=sqrt(2209)`

Promotional Banner

Similar Questions

Explore conceptually related problems

(sqrt(12)+sqrt(5)+sqrt(3))/(sqrt(12)-sqrt(5)-sqrt(3))+(sqrt(20)+sqrt(5)+sqrt(3))/(sqrt(20)-sqrt(5)-sqrt(3))

(12)/(3+sqrt(5)+2sqrt(2)) is equal to 1-sqrt(5)+sqrt(2)+sqrt(10) (b) 1+sqrt(5)+sqrt(2)-sqrt(10) (c) 1+sqrt(5)-sqrt(2)+sqrt(10) (d) 1-sqrt(5)-sqrt(2)+sqrt(10)

(sqrt(5)-sqrt(5))/(sqrt(5)-sqrt(5))

(2)/(sqrt(3)+sqrt(5))+(5)/(sqrt(3)-sqrt(5))=x sqrt(3)+y sqrt(5)

show that (sqrt(7)-sqrt(5))/(sqrt(7)+sqrt(5))times(sqrt(7)-sqrt(5))/(sqrt(7)-sqrt(5)) =frac{(sqrt(7)-sqrt(5))^(2)}{2}

Find the value of (sqrt(sqrt(5)+sqrt(2))+sqrt(sqrt(5)-sqrt(2)))/(sqrt(sqrt(5)+sqrt(3)))

(sqrt(5)-1)/(sqrt(5)+1)+(sqrt(5)+1)/(sqrt(5)-1)=a+b sqrt(5)

(sqrt(3)-sqrt(5))(sqrt(3)+sqrt(5))/(sqrt(7)-2sqrt(5))

(sqrt(5)+sqrt(3))((3sqrt(3))/(sqrt(5)+sqrt(2))-sqrt(5)/(sqrt(3)+sqrt(2))) is equal to :