Home
Class 12
MATHS
If a curve is given by x= a cos t + b/2 ...

If a curve is given by `x= a cos t + b/2 cos2t` and `y= asint + b/2 sin 2t`, then the points for which `(d^2 y)/dx^2 = 0`, are given by

Promotional Banner

Similar Questions

Explore conceptually related problems

The curve is given by x = cos 2t, y = sin t represents

The curve is given by x = cos 2t, y = sin t represents

If x = 2 cos t - cos 2t , y = 2 sin t - sin 2t , then the value of |(d^(2) y)/(dx^(2))|_(t= pi//2 ) is

If x = 2 cos t - cos 2t , y = 2 sin t - sin 2t , then the value of d^2y/dx^2 at t=pi//2 is

If x = 2 cos t - cos 2 t and y =2 sin t - sin 2t, then (dy)/(dx) at t = (pi)/(2) is

Find dy/dx if, x= 2cos t - cos2 t, y= 2sin t - sin 2t, at t= pi / 4

If x=a(cos t+t sin t) and y=a(sin t - t cos t), then (d^2y)/dx^2

x= 2 cos t -cos 2t ,y=2 sin t-sin 2t Find d y / d x

x= 2 cos t -cos 2t ,y=2 sin t-sin 2t Find d y / d x