Home
Class 11
MATHS
The value of sum(r=1)^nint0^1f(r-1+x) \ ...

The value of `sum_(r=1)^nint_0^1f(r-1+x) \ dx` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x) is continuous for all real values of x , then sum_(r=1)^nint_0^1f(r-1+x)dx is equal to (a) int_0^nf(x)dx (b) int_0^1f(x)dx (c) int_0^1f(x)dx (d) (n-1)int_0^1f(x)dx

If f(x) is continuous for all real values of x , then sum_(r=1)^nint_0^1f(r-1+x)dx is equal to (a) int_0^nf(x)dx (b) int_0^1f(x)dx (c) int_0^1f(x)dx (d) (n-1)int_0^1f(x)dx

If f(x) is continuous for all real values of x , then sum_(r=1)^nint_0^1f(r-1+x)dx is equal to (a) int_0^nf(x)dx (b) int_0^1f(x)dx (c) int_0^1f(x)dx (d) (n-1)int_0^1f(x)dx

If f(x) is continuous for all real values of x , then sum_(r=1)^nint_0^1f(r-1+x)dx is equal to (a) int_0^nf(x)dx (b) int_0^1f(x)dx (c) int_0^1f(x)dx (d) (n-1)int_0^1f(x)dx

If f(x) is continuous for all real values of x then sum_(r=1)^(n)int_(0)^(1)f(r-1+x)dx is equal to a) int_(0)^(n)f(x)dx b) int_(0)^(1)f(x)dx c) nint_(0)^(1)f(x)dx d) (n-1)int_(0)^(1)f(x)dx

If f(x) is continuous for all real values of x, then sum_(r=1)^(n)int_(0)^(1)f(r-1+x)dx is equal to (a)int_(0)^(n)f(x)dx(b)int_(0)^(1)f(x)dx(c)int_(0)^(1)f(x)dx(d)(n-1)int_(0)^(1)f(x)dx

If f(n)=sum_(r=1)^(n) r^(4) , then the value of sum_(r=1)^(n) r(n-r)^(3) is equal to

If f(n)=sum_(r=1)^(n) r^(4) , then the value of sum_(r=1)^(n) r(n-r)^(3) is equal to

If int_(0)^(10)f(x)dx=5 , then sum_(K=1)^(10) int_(0)^(1) f(K-1+x)dx is equal to