Home
Class 12
MATHS
Find the minimum value of f(x)=pi^2/(16 ...

Find the minimum value of f(x)=`pi^2/(16 cot^-1 (-x)) - cot^-1 x`

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the minimum value of the function f(x) = (pi^(2))/(16 cot^(-1) (-x)) - cot^(-1) x

Find the minimum value of the function f(x)=(pi^(2))/(pi cot^(-1)(-x))-cot^(-1)x

Find the range of f(x) = cos^(-1) x + cot^(-1) x

If A+B+C=pi, then find the minimum value of cot^(2)A+cot^(2)B+cot^(2)C

If the maximum value of (sec^(-1)x)^(2)+(cos ec^(-1)x)^(2) approaches a,the minimum value of (tan^(-1)x)^(3)+(cot^(-1)x)^(3) approaches b then (a+(b)/(pi)) is equal to

If f(x)=(sqrt(2)cos x-1)/(cot x-1),x!=(pi)/(4). Find the value of f((pi)/(4)) so that f(x) becomes continuous at x=(pi)/(4)

if f(x)=(sqrt(2)cos x-1)/(cot x-1),x!=(pi)/(4) Find the value of f((pi)/(4)) so that f(x) becomes continuous at x=(pi)/(4)

If f(x)=(sqrt(2)cos x-1)/(cot x-1),x!=(pi)/(4). Find the value of f((pi)/(4)) so that f(x) becomes continuous at x=pi/4

Find the value of x where tan^(-1)3+cot^(-1)x=(pi)/(2)

Evaluate cot (tan^(-1) (2x) + cot^(-1) (2x))