Home
Class 12
MATHS
If ln = int e^(mx) cos^n x dx then prove...

If `l_n = int e^(mx) cos^n x dx` then prove that `(m^2+n^2)I_n=e^(m x)*(mcosx+nsinx)cos^(n-1)x+n(n-1)l_(n-2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If l_(n)=int e^(mx)cos^(n)xdx then prove that (m^(2)+n^(2))I_(n)=e^(mx)*(m cos x+n sin x)cos^(n-1)x+n(n-1)l_(n)

If I_(n)=int cos^(n)x dx . Prove that I_(n)=(1)/(n)(cos^(n-1)x sinx)+((n-1)/(n))I_(n-2) .

If I_(n)=int cos^(n)x dx . Prove that I_(n)=(1)/(n)(cos^(n-1)x sinx)+((n-1)/(n))I_(n-2) .

If I_(n)=int cos^(n)x dx . Prove that I_(n)=(1)/(n)(cos^(n-1)x sinx)+((n-1)/(n))I_(n-2) .

If l_(m,n)=intx^(m)cosnxdx, then prove that l_(m,n)=(x^(m)sinnx)/(n)+(mx^(m-1)cosnx)/(n^(2))-(m(m-1))/(n^(2))l_(m-2,n)

If I_(n) = int x^(-n) e^(ax) dx then prove that I_(n)=(-e^(ax))/((n-1)x^(n-1))+(a)/(n-1)I_(n-1)

If I_(n) = int x^(-n) e^(ax) dx then prove that I_(n)=(-e^(ax))/((n-1)x^(n-1))+(a)/(n-1)I_(n-1)

If l_(n)=intcos^(n)xdx, prove that l_(n)=(1)/(n)(cos^(n-1)xsinx)+((n-1)/(n))l_(n-2) .

If I_(n)=int cos^(n)x dx , prove that, I_(n)=(1)/(n)cos^(n-1)x sin x+(n-1)/(n).I_(n-2) .Hence, evaluate, int cos^(5)x dx .

If I_(n) = int x^(n) e^(-x) dx prove that I_(n) = -x^(n) e^(-x) + nI_(n-1)