Home
Class 12
MATHS
The function f(x) is defined as follows:...

The function `f(x)` is defined as follows: `f(x) = 2-3x` , when `x < 0, 3x-2` when `x>=0` Evaluate `lim_(x-> 0^+) f(x), lim_(x->0^-) f(x)` and hence state whether `lim_(x->0) f(x)` exists or not.

Promotional Banner

Similar Questions

Explore conceptually related problems

A function f(x) is defined as follows: f(x)=1 if x>0;-1 if x<0;0 if x=0. Prove that lim_(x rarr0)f(x) does not exist

If f is an even function, then prove that lim_(x->0^-) f(x) = lim_(x->0^+) f(x)

If f(x) is defined as f(x)={{:(2x+3,x,le 0),(3x+3,x,ge 0):} then evaluate : lim_(xrarr0) f(x) "and" lim_(xrarr1) f(x)

If f(x) is defined as f(x)={{:(2x,+,3,x,le 0),(3x,+,3,x,le0):} then evaluate : lim_(xrarr0) f(x) "and" lim_(xrarr1) f(x)

If f(x) is defined as follows: f(x)={{:(1,x,gt0),(-1,x,lt0),(0,x,=0):} Then show that lim_(xrarr0) f(x) does not exist.

If f(x) is defined as follows: f(x){{:(1,x,gt0),(-1,x,lt0),(0,x,=0):} Then show that lim_(xrarr0) f(x) does not exist.

If f(x) is an odd function and lim_(x rarr 0) f(x) exists, then lim_(x rarr 0) f(x) is

If f is an even function , then prove that Lim_( xto 0^(-)) f(x) = Lim_(x to 0^(+)) f(x) , whenever they exist .

f(x)=x,x 0 then find lim_(x rarr0)f(x) if exists

Sketch the graph of a function f that satifies the given values: f(-2)=0 , f(2)=0 , lim_(x to -2) f(x)=0 , lim_(x to 2) f(x) does not exist.