Home
Class 12
MATHS
lim(x->2)((1+x)^n-3^n)/(x-2)=n*3^(n-1)...

`lim_(x->2)((1+x)^n-3^n)/(x-2)=n*3^(n-1)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Show : underset(xrarr2)"lim"((1+x)^(n)-3^(n))/(x-2)=n.3^(n-1)

If lim(n->oo)(n*3^n)/(n(x-2)^n +n*3^(n+1)-3^n) = 1/3 then the range of x is (where n epsilon N )

If lim(n->oo)(n*3^n)/(n(x-2)^n +n*3^(n+1)-3^n) = 1/3 then the range of x is (where n epsilon N )

(lim)_(x->0)((1^x+2^x+3^x++n^x)/n)^(1/x)\ is equal to (n\ !)\ ^n b. (n !)^(1//n) c. n ! d. "ln"(n !)

If lim_(ntooo) (n.3^(n))/(n(x-2)^(n)+n.3^(n+1)-3^(n))=1/3 , then the range of x is (where n in N )

If lim_(ntooo) (n.3^(n))/(n(x-2)^(n)+n.3^(n+1)-3^(n))=1/3 , then the range of x is (where n in N )

lim_(x->0)((1^x+2^x+3^x+....+n^x)/n)^(1/x)

lim_(x->oo)((1^(1/x) +2^(1/x) +3^(1/x) +...+n^(1/x))/n)^(nx) is equal to

The function f(x)=lim_(nrarroo)((x-2)^(2n)-1)/((x-2)^(2n)+1) (AA n in N) is discontinuous at

lim_(lim(n rarr oo))(n*3^(n))/(n(x-2)^(n)+n*3^(n+1)-3^(n))=(1)/(3)