Home
Class 11
MATHS
Prove that: (cosx-cosy)^2+(sinx-siny)^2=...

Prove that: `(cosx-cosy)^2+(sinx-siny)^2=4sin^2` `(x-y)/2`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: (cosx-cosy)^2 +(sinx-siny)^2=4 sin^2frac (x-y)(2)

Prove that: (cosx+cosy)^2+(sinx-siny)^2 =4cos^2 (x+y)/2

Prove that (cosx +cosy)^2+(sinx+siny)^2=4cos^2((x-y)/2)

Prove that (cosx+cosy)^2+(sinx-siny)^2=4cos^2((x+y)/2)

Prove that (cosx+cosy)^(2)+(sinx-siny)^(2)=4cos^(2)((x+y)/(2))

(cosx+cosy)^(2)|(sinx-siny)^(2)=4cos^(2)(x+y)/(2)

Prove the following: (cosx-cosy)^2+(sinx-siny)^2=4sin^2(frac(x-y)(2))

Prove that : (cosx+cosy)^(2)+(sinx-siny)^(2)=4cos^(2)""(x+y)/(2)

Prove the following: (cosx+cosy)^2+(sinx-siny)^2=4cos^2(frac(x+y)(2))

Prove that (cosx + cosy)/(sinx - siny) = cot ((x-y)/2)