Home
Class 12
MATHS
(Projection Formulae) if a ,b ,c are the...

(Projection Formulae) if `a ,b ,c` are the lengths of the sides opposite respectively to the angles `A ,B ,C` of a triangle `A B C ,` show that
(i)`a=bcosC+ccosB` (ii) `b=ccosA+acosC` (iii)`c=acosB+bcosA`

Text Solution

Verified by Experts

` VEC(AB) ⋅ VEC(AB) =( VEC(AC) − VEC(BC) )⋅( VEC(AC) − VEC(BC) ) `

`=> VEC(AB) ⋅ VEC(AB) = VEC(AC) ⋅ VEC(AC) − VEC(AC) ⋅ VEC(BC) − VEC(BC) ⋅ VEC(AC) + VEC(BC) ⋅ VEC(BC) `

`=> VEC(AB) ⋅ VEC(AB) = VEC(AC) ⋅ VEC(AC) + VEC(BC) ⋅ VEC(BC) −2 VEC(BC) ⋅ VEC(AC) (:. VEC(AC) ⋅ VEC(BC) = VEC(BC) ⋅ VEC(AC) )`

`=> abs( VEC(AB) )^2= abs( VEC(AC) )^2+ abs( VEC(BC) )^2−2⋅ abs( VEC(BC) )⋅ abs( VEC(AC) )⋅cosC`

`=>c^2=b^2+a^2−2⋅a⋅b⋅cosC `

`=>cosC=2 vec(AB) a^2+b^2−c^2`
Promotional Banner

Topper's Solved these Questions

  • RELATIONS

    RD SHARMA|Exercise Solved Examples And Exercises|197 Videos
  • SCALAR TRIPLE PRODUCT

    RD SHARMA|Exercise Solved Examples And Exercises|59 Videos

Similar Questions

Explore conceptually related problems

If a, b,c are the lengths of the sides of triangle , then

(Cosine Formulae) if a,b,c are the lengths of the sides opposite respectively to the angles A,B,C of a triangle ABC, show that cos A(b^(2)+c^(2)-a^(2))/(2bc)( (ii) cos B(c^(2)+a^(2)-b^(2))/(2ac) (iii) (i) cos C(a^(2)-c^(2))/(2ab)

In Delta ABC prove that (i)a=b cos C+os B(ii)b=os A+a cos C(iii)c=a cos B+b cos A

In triangle ABC , prove that c=acosB +bcosA .

In a triangle ABC , acosB + b cosC + c cosA =(a+b+c)/2 then

With usual notatons , in triangle ABC , prove that a(bcosC-c cos B)=b^2-c^2 .

In a triangle ABC , if a,b,c are the sides opposite to angles A , B , C respectively, then the value of |{:(bcosC,a,c cosB),(c cosA,b,acosC),(acosB,c,bcosA):}| is

If m_(a),m_(b),m_(c) are lengths of medians through the vertices A,B ,C of triangle ABC respectively, then length of side C=

If A,B and C are the interior angles of a triangle ABC, then show that cot((A+B-C)/(2))=tan C

RD SHARMA-SCALAR OR DOT PRODUCT-Solved Examples And Exercises
  1. Express 2 hat i- hat j+3 hat k as the sum of vector parallel and a vec...

    Text Solution

    |

  2. Show that the vectors vec a=3 hat i-2 hat j+ hat k , vec b=3 hat j+5 ...

    Text Solution

    |

  3. (Projection Formulae) if a ,b ,c are the lengths of the sides opposite...

    Text Solution

    |

  4. Prove using vectors: If two medians of a triangle are equal, then it i...

    Text Solution

    |

  5. Find the angle between two vectors vec a and vec b with magnit...

    Text Solution

    |

  6. Find the angle between the vectors 5hat i+3 hat j+4 hat k and 6 hat i...

    Text Solution

    |

  7. Find the projection of the vector 7 hat i+ hat j-4 hat k in vec a=2 ha...

    Text Solution

    |

  8. For any vector vec r , prove that vec r=( vec rdot hat i) hat i+( ve...

    Text Solution

    |

  9. Find veca * vec b when vec a=2 hat i+2 hat j- hat ka n d vec b=6...

    Text Solution

    |

  10. Find the value of lambda so that the vectors vec a=2 hat i+lambda hat...

    Text Solution

    |

  11. Find the value of p for which the vectors vec a=3 hat i+2 hat j+9 ha...

    Text Solution

    |

  12. Find the values of a which the vector vec r=(a^2-4) hat i+2 hat j-(a^...

    Text Solution

    |

  13. If vec a , vec b , vec c are unit vector, prove that | vec a- vec b|...

    Text Solution

    |

  14. If vec a , vec b , vec c are mutually perpendicular unit vectors, fin...

    Text Solution

    |

  15. Find the value of c for which the vectors vec a=(clog2x) hat i-6 hat...

    Text Solution

    |

  16. Let vec a= hat i+4 hat j+2 hat k ,\ \ vec b=3 hat i-\ 2 hat j+7 hat ...

    Text Solution

    |

  17. Dot products of a vector with vectors 3 hat i-5 hat k ,2 hat i+7 hat j...

    Text Solution

    |

  18. Let vec a , vec b , vec c be three vectors such that | vec a|=1,| vec...

    Text Solution

    |

  19. (Cosine Formulae) if a ,b ,c are the lengths of the sides opposite res...

    Text Solution

    |

  20. Prove that the altitudes of a triangle are concurrent.

    Text Solution

    |