Home
Class 12
MATHS
By using properties of determinants. Sho...

By using properties of determinants. Show that: `|xx^2y z y y^2z x z z^2x y|=(x-y)(y-z)(z-x)(x y+y z+z x)`

Promotional Banner

Similar Questions

Explore conceptually related problems

By using properties of determinants. Show that: |[x,x^2,y z],[ y, y^2,z x],[ z, z^2,x y]|=(x-y)(y-z)(z-x)(x y+y z+z x)

Using the properties of determinants, show that: [[x, x^2, yz],[y, y^2, zx],[z, z^2, xy]]=(x-y)(y-z)(z-x)(xy+yz+zx)

Using the properties of determinants, show that: abs((x,x^2,yz),(y,y^2,xz),(z,z^2,xy))=(x−y)(y−z)(z−x)(xy+yz+zx)

Using the properties of determinants, show that : |[[x^2, y^2, z^2],[yz, zx, xy],[x,y,z]]|= (x-y)(y-z)(z-x)(xy+yz+zx) .

Using properties of determinant show that : |(y+z,x,x),(y,z+x,y),(z,z,x+y)|=4xyz

By using properties of determinants , show that : {:|( x,x^(2) , yz) ,( y,y^(2) , zx ) ,( z , z^(2) , xy ) |:} =( x-y)(y-z) (z-x) (xy+yz+ zx)

By using properties of determinants , show that : {:[( x,x^(2) , yz) ,( y,y^(2) , zx ) ,( z , z^(2) , xy ) ]:} =( x-y)(y-z) (z-x) (xy+yz+ zx)

By using properties of determinants , show that : {:[( x,x^(2) , yz) ,( y,y^(2) , zx ) ,( z , z^(2) , xy ) ]:} =( x-y)(y-z) (z-x) (xy+yz+ zx)

Show that : |x y z x^2y^2z^2x^3y^3z^3|=x y z(x-y)(y-z)(z-x)dot

Prove the following using properties of determinants det[[x,y,zx^(2),y^(2),z^(2)y+z,z+x,x+y]]=(x-y)(y-z)(z-x)(x+y+z)]|=