Home
Class 12
MATHS
If A(vec a); B(vec b) and C(vec c) are t...

If `A(vec a); B(vec b) and C(vec c)` are three non collinear points, then for any point `P(vec p)` in the plane of the `Delta ABC` , prove that ; `[vec a, vec b, vec c]=vec p, (vec a x vec b + vec b x vec c + vec c x vec a)`

Promotional Banner

Similar Questions

Explore conceptually related problems

[vec a + vec b, vec b + vec c, vec c + vec a] = 2 [vec a, vec b, vec c]

[vec a+vec b,vec b+vec c,vec c+vec a]=2[vec a,vec b,vec c]

For any three vectors vec a, vec b, vec c the expression (vec a - vec b) . [(vec b - vec c ) xx (vec c - vec a)] =

For any three vectors veca, vec b, vec c prove that (vec a + vec b)+ vec c = vec a + (vec b + vec c)

For any three vectors vec a, vec b, vec c, (vec a-vec b) * (vec b-vec c) xx (vec c-vec a) is equal to

[[vec a + vec b-vec c, vec b + vec c-vec a, vec c + vec a-vec b is equal to

If vec a , vec b ,a n d vec c are three non-coplanar non-zero vecrtors, then prove that ( vec a . vec a) vec bxx vec c+( vec a . vec b) vec cxx vec a+( vec a . vec c) vec axx vec b=[ vec b vec c vec a] vec a

If vec a , vec b ,a n d vec c are three non-coplanar non-zero vecrtors, then prove that ( vec a . vec a) vec bxx vec c+( vec a . vec b) vec cxx vec a+( vec a . vec c) vec axx vec b=[ vec b vec c vec a] vec a

For any three vectors a ,\ b ,\ c prove that [ vec a+ vec b\ , vec b+ vec c\ , vec c+ vec a]=2\ [ vec a\ vec b\ vec c]dot

For any three vectors a ,\ b ,\ c prove that [ vec a+ vec b\ vec b+ vec c\ vec c+ vec a]=2\ [ vec a\ vec b\ vec c]dot