Home
Class 9
MATHS
If A N C~= L K M , then side of L K M ...

If ` A N C~= L K M ,` then side of ` L K M` equal to side `A C\ ` of ` A B C` is `L K\ ` (b) `K M` (c) `L M` (d) None of these

Promotional Banner

Similar Questions

Explore conceptually related problems

If A N C~= L K M , then side of L K M equal to side A C\ of A B C is (a) L K\ (b) K M (c) L M (d) None of these

A B C is a right-angled triangle in which /_B=90^0 and B C=adot If n points L_1, L_2, ,L_nonA B is divided in n+1 equal parts and L_1M_1, L_2M_2, ,L_n M_n are line segments parallel to B Ca n dM_1, M_2, ,M_n are on A C , then the sum of the lengths of L_1M_1, L_2M_2, ,L_n M_n is (a(n+1))/2 b. (a(n-1))/2 c. (a n)/2 d. none of these

A B C is a right-angled triangle in which /_B=90^0 and B C=adot If n points L_1, L_2, ,L_nonA B is divided in n+1 equal parts and L_1M_1, L_2M_2, ,L_n M_n are line segments parallel to B Ca n dM_1, M_2, ,M_n are on A C , then the sum of the lengths of L_1M_1, L_2M_2, ,L_n M_n is (a(n+1))/2 b. (a(n-1))/2 c. (a n)/2 d. none of these

A B C is a right-angled triangle in which /_B=90^0 and B C=adot If n points L_1, L_2, ,L_nonA B is divided in n+1 equal parts and L_1M_1, L_2M_2, ,L_n M_n are line segments parallel to B Ca n dM_1, M_2, ,M_n are on A C , then the sum of the lengths of L_1M_1, L_2M_2, ,L_n M_n is (a(n+1))/2 b. (a(n-1))/2 c. (a n)/2 d. none of these

A B C is a right-angled triangle in which /_B=90^0 and B C=adot If n points L_1, L_2, ,L_nonA B is divided in n+1 equal parts and L_1M_1, L_2M_2, ,L_n M_n are line segments parallel to B Ca n dM_1, M_2, ,M_n are on A C , then the sum of the lengths of L_1M_1, L_2M_2, ,L_n M_n is (a(n+1))/2 b. (a(n-1))/2 c. (a n)/2 d. none of these

In a A B C , If L a n d M are points on A B a n d A C respectively such that L M B Cdot Prove that: a r ( A B M)=a r ( A C L)

What are the values of n for the shells K,L and M?

In a \ A B C , If L\ a n d\ M are points on A B\ a n d\ A C respectively such that L M B Cdot Prove that: a r\ (\ L C M)=a r\ ( L B M)

In a \ A B C , If L\ a n d\ M are points on A B\ a n d\ A C respectively such that L M B Cdot Prove that: a r\ (\ L B C)=\ a r\ (\ M B C)

In a \ A B C , If L\ a n d\ M are points on A B\ a n d\ A C respectively such that L M || B C . Prove that: a r\ (\ L O B)=a r\ (\ M O C) .