Home
Class 12
MATHS
Show that the projection vector vec aa ...

Show that the projection vector ` vec aa n d vec b(!= vec0)(com pon e n tof vec aaong vec b)i s(( vec adot vec b)/(| vec b|^2))ZDS vec bdot`

Promotional Banner

Similar Questions

Explore conceptually related problems

The orthogonal projection of vec a on vec b is (( vec adot vec b) vec a)/(|"a"|^2) b. (( vec adot vec b) vec b)/(| vec b|^2) c. vec a/(| vec a|) d. vec b/(| vec b|)

If vec a\ a n d\ vec b are unit vectors then write the value of | vec axx vec b|^2+( vec adot vec b)^2dot

If vectors vec a , vec b ,a n d vec c are coplanar, show that | vec a vec b vec c vec adot vec a vec adot vec b vec adot vec c vec bdot vec a vec bdot vec b vec bdot vec c|=odot

The vectors vec a and vec b are not perpendicular and vec c and vec d are two vectors satisfying : vec b""xxvec c""= vec b"" xxvec d"",vec a * vec d=0 . Then the vector vec d is equal to : (1) vec b-(( vec bdot vec c)/( vec adot vec d)) vec c (2) vec c+(( vec adot vec c)/( vec adot vec b)) vec b (3) vec b+(( vec bdot vec c)/( vec adot vec b)) vec c (4) vec c-(( vec adot vec c)/( vec adot vec b)) vec b

If vec a_|_ vec b , then vector vec v in terms of vec aa n d vec b satisfying the equation s vec vdot vec a=0a n d vec vdot vec b=1a n d[ vec v vec a vec b]=1 is vec b/(| vec b|^2)+( vec axx vec b)/(| vec axx vec b|^2) b. vec b/(| vec b|^)+( vec axx vec b)/(| vec axx vec b|^2) c. vec b/(| vec b|^2)+( vec axx vec b)/(| vec axx vec b|^) d. none of these

If | vec a|=10 ,\ | vec b|=2\ a n d\ | vec axx vec b|=16 find vec adot vec bdot

Show that the projection of vec(b) on vec(a) ne vec(0) is : ((vec(a).vec(b))/(|vec(a)|^(2)))vec(a) .

If vec a , vec b and vec c are three non-zero, non coplanar vector vec b_1= vec b-( vec bdot vec a)/(| vec a|^2) vec a , vec c_1= vec c-( vec cdot vec a)/(| vec a|^2) vec a+( vec bdot vec c)/(| vec c|^2) vec b_1 , , c_2= vec c-( vec cdot vec a)/(| vec a|^2) vec a-( vec bdot vec c)/(| vec b_1|^2) , b_1, vec c_3= vec c-( vec cdot vec a)/(| vec c|^2) vec a+( vec bdot vec c)/(| vec c|^2) vec b_1 , vec c_4= vec c-( vec cdot vec a)/(| vec c|^2) vec a=( vec bdot vec c)/(| vec b|^2) vec b_1 then the set of orthogonal vectors is ( vec a , vec b_1, vec c_3) b. ( vec a , vec b_1, vec c_2) c. ( vec a , vec b_1, vec c_1) d. ( vec a , vec b_2, vec c_2)

If two vectors vec aa n d vec b are such that |veca|=3, |vecb|=2 and veca.vecb=6, . , Find | vec a+ vec b|a n d| vec a- vec b|dot

The reflection of the point vec a in the plane vec rdot vec n=q is a. vec a+(( vec q- vec adot vec n))/(| vec n|) b. vec a+2((( vec q- vec adot vec n))/(| vec n|)) vec n c. vec a+(2( vec q+ vec adot vec n))/(| vec n|^2) vec n d. none of these