Home
Class 12
MATHS
For any three vectors vec a , vec b , v...

For any three vectors ` vec a , vec b , vec c ,` prove that `| vec a+ vec b+ vec c|^2=| vec a|^2+| vec b|^2+| vec c|^2+2( vec adot vec b+ vec bdot vec c+ vec cdot vec a)`

Promotional Banner

Similar Questions

Explore conceptually related problems

For any three non-zero vectors vec a, vec b and vec c if | (vec a xxvec b) * vec c | = | vec a || vec b || vec c | then vec a * vec b + vec b * vec c + vec c * vec a =

For any three vectors vec a, vec b, vec c, (vec a-vec b) * (vec b-vec c) xx (vec c-vec a) is equal to

If vectors vec a , vec b ,a n d vec c are coplanar, show that | vec a vec b vec c vec adot vec a vec adot vec b vec adot vec c vec bdot vec a vec bdot vec b vec bdot vec c|=odot

vec a * {(vec b + vec c) xx (vec a + 2vec b + 3vec c)} = [vec with bvec c]

For any three vectors vec a;vec b;vec c find [vec a+vec b;vec b+vec c;vec c+vec a]

If vec a, vec b, vec c are unit vectors such that vec a + vec b + vec c = vec 0 find the value of vec a * vec b + vec b * vec c + vec c * vec avec a * vec b + vec b * vec c + vec c * vec a

Three vectors vec a , vec b , vec c satisfy the condition vec a+ vec b+ vec c= vec0 . Evaluate the quantity mu= vec adot vec b+ vec bdot vec c+ vec cdot vec a , if | vec a|=1, | vec b|=4 a n d | vec c|=2.

If the vectors vec a , vec b ,a n d vec c form the sides B C ,C Aa n dA B , respectively, of triangle A B C ,t h e n vec adot vec b+ vec bdot vec c+ vec cdot vec a=0 b. vec axx vec b= vec bxx vec c= vec cxx vec a c. vec adot vec b= vec bdot vec c= vec cdot vec a d. vec axx vec b+ vec bxx vec c+ vec cxx vec a=0

vec a,vec b,vec c are three vectors,such that vec a+vec b+vec c=0 , |vec a|=1, |vec b|=2, |vec c|= 3 , vec a*vec b+vec b*vec c+vec c*vec a is equal to

For any three vectors a,b,c prove that [vec a+vec bvec b+vec cvec c+vec a]=2[vec avec bvec c]