Home
Class 12
MATHS
If f(x)=cos^(-1)(x) and g(x)=x^(2), then...

If `f(x)=cos^(-1)(x)` and `g(x)=x^(2)`, then range of `f(g(x))` is)

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=cos^(-1)(cos x) and g(x)=x, then

If f(x)= sin^(-1)x and g(x)=[sin(cosx)]+[cos(sinx)], then range of f(g(x)) is (where [*] denotes greatest integer function)

If f(x)=sqrt(2-x) and g(x)=sqrt(1-2x) ,then the domain of f[g(x)] is:

If f(x)=log_(e^(2)x)((2ln x+2)/(-x)) and g(x)={x} then range of g(x) for existance of f(g(x)) is

If f(x)=sin x+cos x and g(x)=x^(2)-1 then g(f(x)) is invertible in the domain.

If f(x)=3 cos x and g(x)=sin^(2)x , the evaluate: (f+g)((pi)/(2))

If two real functions f and g such that f(x)=x^(2) and g(x)=[x] , then the value of f(-2)+g(-1/2) is

If f(x)=x^(2)g (x) and g(1)=6, g'(x) 3 , find the value of f' (1).

If f (x) =(x^(2) -1) " and " g (x) =(2x +3) " then " (g o f) (x) =?

If f(x) = x^(2) and g(x) = (1)/(x^(3)) . Then the value of (f(x)+g(x))/(f(-x)-g(-x)) at x = 2 is