Home
Class 11
MATHS
If acos alpha+b sin beta=c,a sin alpha+...

If `acos alpha+b sin beta=c`,`a sin alpha+b cos beta=c` then `sin(alpha+beta)`
`(2c^(2)+a^(2)+b^(2))/(ab)`
`(2c^(2)-a^(2)-b^(2))/(ab)`
`(2c^(2)+a^(2)-b^(2))/(2ab)`
`(2c^(2)-a^(2)-b^(2))/(2ab)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If s in alpha+s in beta=a and cos alpha+cos beta=b show that :sin( alpha + beta )=(2a)/(a^(2)+b^(2))

If sin alpha+sin beta=a and cos alpha+cos beta=b show that sin(alpha+beta)=(2ab)/(alpha^(2)+beta^(2))

If sin alpha+sin beta=a and cos alpha+cos beta=b prove that :cos(alpha-beta)=(1)/(2)(a^(2)+b^(2)-2)

If s in alpha+s in beta=a and cos alpha+cos beta=b show that: sin(alpha+beta)=(2ab)/(a^(2)+b^(2))cos(alpha+beta)=(b^(2)-a^(2))/(b^(2)+a^(2))

If sinalpha+sinbeta=a and coslapha+cosbeta=b then prove that sin(alpha+beta)=(2ab)/(a^2+b^2)

If sin alpha+sin beta=a and cos alpha+cos beta=b prove that tan((alpha-beta)/(2))=+-sqrt((4-a^(2)-b^(2))/(a^(2)+b^(2)))

If s in alpha+s in beta=a and cos alpha-cos beta=b then (tan(alpha-beta))/(2)=-(a)/(b) b.(b)/(a) c.sqrt(a^(2)+b^(2)) d.none of these

If alpha and beta are the solutions of a cos theta+b sin theta=c, then show that cos(alpha+beta)=(a^(2)-b^(2))/(a^(2)+b^(2))( ii) cos(alpha-beta)=(2c^(2)-(a^(2)+b^(2)))/(a^(2)+b^(2))

If cosalpha+cosbeta=a, sinalpha+sinbeta=b, then cos(alpha+beta) is equal to (A) (2ab)/(a^2+b^2) (B) (a^2+b^2)/(a^2-b^2) (C) (a^2-b^2)/(a^2+b^2) (D) (b^2-a^2)/(b^2+a^2)

If alpha and beta are the solutions roots of a cos theta+b sin theta=c, then choose the correct option (A)sin alpha+sin beta=(2bc)/(a^(2)+b^(2))(B)sin alpha sin beta=(c^(2)-a^(2))/(a^(2)+b^(2))(C)sin alpha+sin beta=(a^(2)-b^(2))/(c^(2)+b^(2))(D)sin alpha sin beta=(a^(2)-b^(2))/(c^(2)+b^(2))(D)