Home
Class 12
MATHS
tan^(-1)(2+x)+tan^(-1)(2-x)=tan^(-1)((2)...

`tan^(-1)(2+x)+tan^(-1)(2-x)=tan^(-1)((2)/(3))`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that tan^(-1)(x+1)+tan^(-1)(x-1)=tan^(-1)((2x)/(2-x^2))

If 3tan^(-1)(2-sqrt(3))-tan^(-1)(x)=tan^(-1)((1)/(3)) then x=

Solve for x : tan^(-1)(x+2)+tan^(-1)(x-2)=tan^(-1)(8/(79)) , x >0

tan^(-1)2x+tan^(-1)3x=(pi)/(4)

The root of the equation tan^(-1)((x-1)/(x+1))+tan^(-1)((2x-1)/(2x+1))=tan^(-1)((23)/(36)) is

Solve: tan^(-1)((x-1)/(x+1))+tan^(-1)((2x-1)/(2x+1))=tan^(-1)((23)/(36))

Find x if tan^(-1)(x) = tan^(-1)(1/2) + tan^(-1)(3/7)

tan^(-1)x+(tan^(-1)(2x))/(1-x^(2))=tan^(-1)((3x-x^(3))/(1-3x^(2))),|x|<(1)/(sqrt(3))

Prove the following: tan^(-1)x+tan^(-1)((2x)/(1-x^(2)))=tan^(-1)((3x-x^(3))/(1-3x^(2)))