Home
Class 11
MATHS
A triangle is inscribed in a circle.The ...

A triangle is inscribed in a circle.The vertices of the triangle divide the circle into three arcs of length `3,4 and 5` ,then the area of the triangle is equal to
`1.(9sqrt(3)(1+sqrt(3)))/(pi^(2))`
`2.(9sqrt(3)(sqrt(3)-1))/(pi^(2))`
`3.(9sqrt(3)(1+sqrt(3)))/(2 pi^(2))`
` 4.(9sqrt(3)(sqrt(3)-1))/(2 pi^(2))`

Promotional Banner

Similar Questions

Explore conceptually related problems

(sqrt(2)(2+sqrt(3)))/(sqrt(3)(sqrt(3)+1))-(sqrt(2)(2-sqrt(3)))/(sqrt(3)(sqrt(3)-1))

The value of ((sqrt(sqrt(3)+1)+sqrt(sqrt(3)-1))^(2)(sqrt(3)-sqrt(2)))/((sqrt(sqrt(3)+1))^(2)-(sqrt(sqrt(3)-1))^(2)) is

If log_(sqrt((pi)/(2)))(log_(9)(sqrt(3)+sqrt(12)))=2

(1)/(sqrt(2)+sqrt(3))+(1)/(sqrt(3)+sqrt(4))

The incenter of the triangle with vertices (1,sqrt(3)),(0,0), and (2,0) is (a) (1,(sqrt(3))/(2)) (b) ((2)/(3),(1)/(sqrt(3)))(c)((2)/(3),(sqrt(3))/(2)) (d) (1,(1)/(sqrt(3)))

(sqrt(2)(2+sqrt(3)))/(sqrt(3)(sqrt(3)+1))xx(sqrt(2)(2-sqrt(3)))/(sqrt(3)(sqrt(3)-1)) is equal to 3sqrt(2)(b)(sqrt(2))/(3) (c) (2)/(3) (d) (1)/(3)

If the vertices of a triangle are (sqrt5,0) and (sqrt3,sqrt2) , and (2,1) then the orthocentre of the triangle is

If the distance between the centers of two circles of unit radii is 1 the common area of the circles is 1) (2 pi)/(3)-sqrt(3) 2) (2 pi)/(3)+sqrt(3) 3) (2 pi)/(3)-(sqrt(3))/(2) 4) (2 pi)/(3)(sqrt(3))/(3)