Home
Class 13
MATHS
Let x=2(t+(1)/(t)) and y=2(t-(1)/(t)),t!...

Let `x=2(t+(1)/(t))` and `y=2(t-(1)/(t)),t!=0.` Then,the value of `(dy)/(dx)` at `t=2` is

Promotional Banner

Similar Questions

Explore conceptually related problems

If x=t-1/t, and y=t+1/t," then the value of "(dy)/(dx)" at "t=2 is

If x=t+(1)/(t) and y=t-(1)/(t) , where t is a parameter,then a value of (dy)/(dx)

If tan x = (2t)/(1 -t^(2)) " and sin y" = (2t)/(1 + t^(2)) , then the value of (dy)/(dx) is

If x=a(t+(1)/(t)) and y=a(t-(1)/(t)), prove that (dy)/(dx)=(x)/(y)

If x=(t+(1)/(t)),y=(t-(1)/(t)) , then (dy)/(dx)=?

If sin x=(2t)/(1+t^(2)) and cot y=(1-t^(2))/(2t) then the value of (d^(2)x)/(dy^(2))=

If x=a sin2t(1+cos2t) and y=b cos2t(1-cos2t), find the values of (dy)/(dx) at t=(pi)/(4) and t=(pi)/(3)

If a gt0, x=(t+(1)/(t))^(a) and y=a^((t+(1)/(t))) , find (dy)/(dx).